

ORGANIC RANKINE CYCLE TECHNOLOGY

HEAT RECOVERY APPLICATIONS

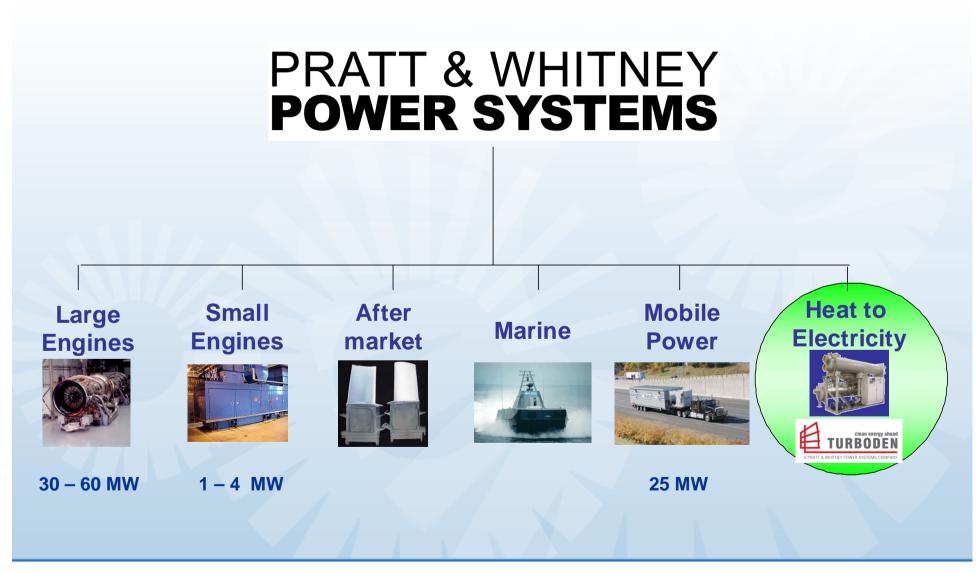
Pratt & Whitney Confidential and Proprietary

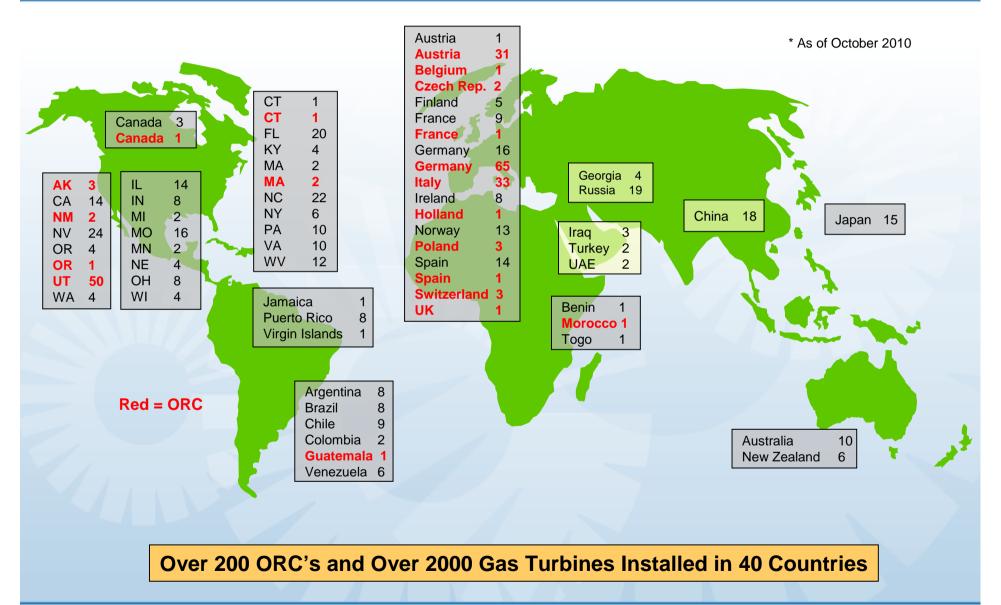
UNITED TECHNOLOGIES CORPORATION 🏶 Pratt & Whitney

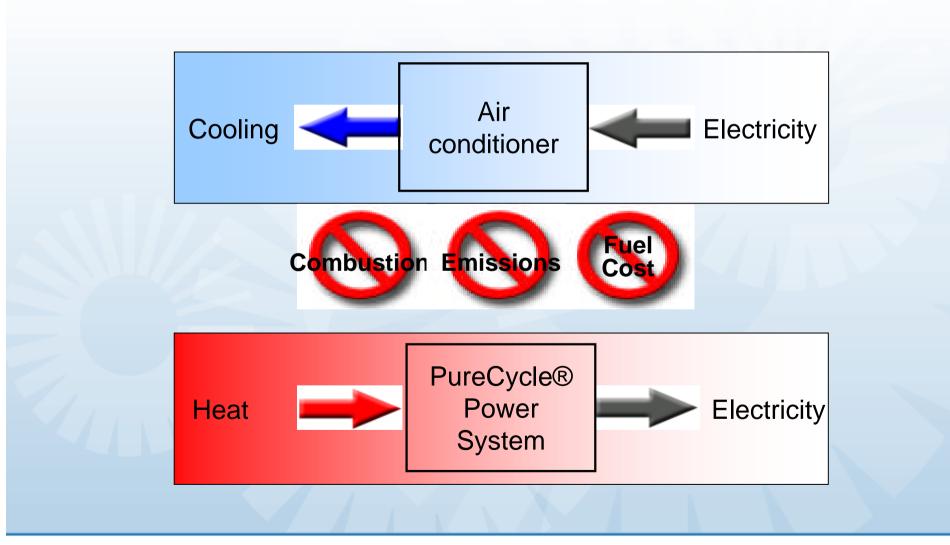
Hamilton Sundstrand

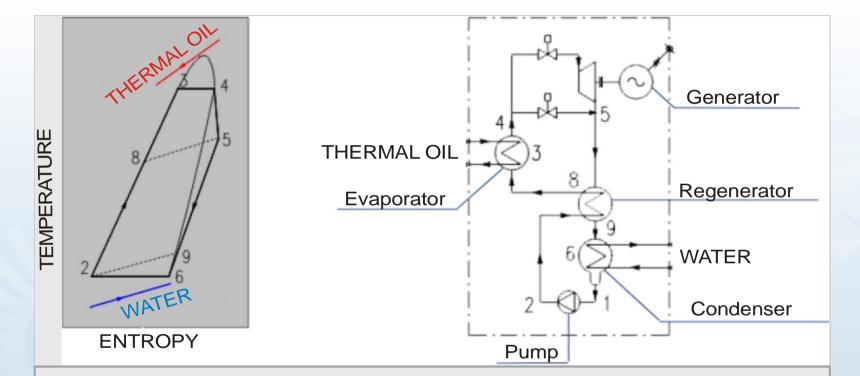
Pratt & Whitney

Sikorsky


PRATT & WHITNEY OVERVIEW


PRATT & WHITNEY POWER SYSTEMS

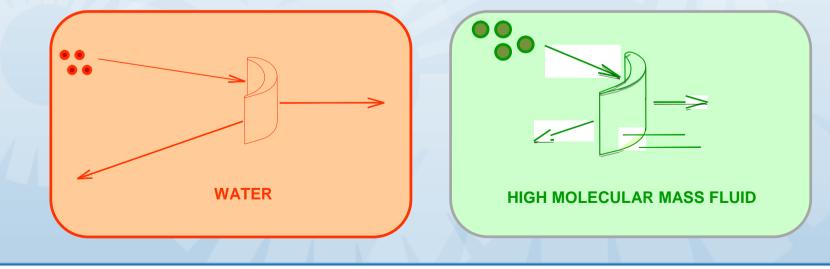

PWPS GLOBAL FOOTPRINT*



"Reverse" of air conditioning cycle

The turbogenerator uses the hot temperature thermal oil to pre-heat and vaporize a suitable organic working fluid in the evaporator (8 3 4). The organic fluid vapor powers the turbine (4 5), which is directly coupled to the electric generator through an elastic coupling. The exhaust vapor flows through the regenerator (5 9) where it heats the organic liquid (2 8). The vapor is then condensed in the condenser (cooled by the water flow) (9 6 1). The organic fluid liquid is finally pumped (1 2) to the regenerator and then to the evaporator, thus completing the sequence of operations in the closed-loop circuit.

8


HIGH MOLECULAR MASS FLUID – ADV. Pratt & Whitney

Water

- Small, fast moving molecules
- Metal parts and blade erosion
- Multistage turbine and high mechanical stress

Organic Fluid

- Very large flow rate
- Larger diameter turbine
- No wear of blades and metal parts

Technical advantages

- High cycle efficiency
- Very high turbine efficiency (up to 90%)
- Low mechanical stress of the turbine due to the low peripheral speed
- Low RPM of the turbine allows a direct drive electric generator without reduction gear
- No erosion of blades due to the absence of moisture in the vapor nozzles

Operational advantages / results

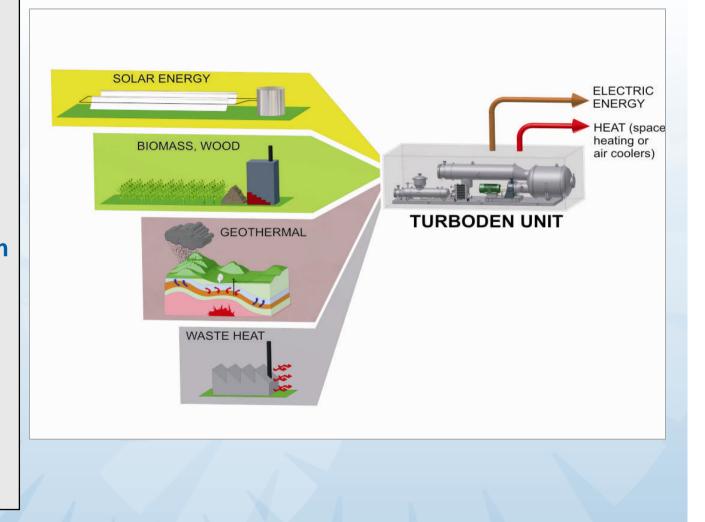
- Simple start-stop procedures
- Automatic / continuous operation
- No on-site operator needed
- Quiet operation
- High Availability (availability > 98%)
- Partial load operation down to 10% of nominal power
- High efficiency even at partial load
- Low O&M requirements: about 3-5 hours / week
- Long life

BIOMASS, WOOD

• 30 years of ORC experience

Cycle (ORC)

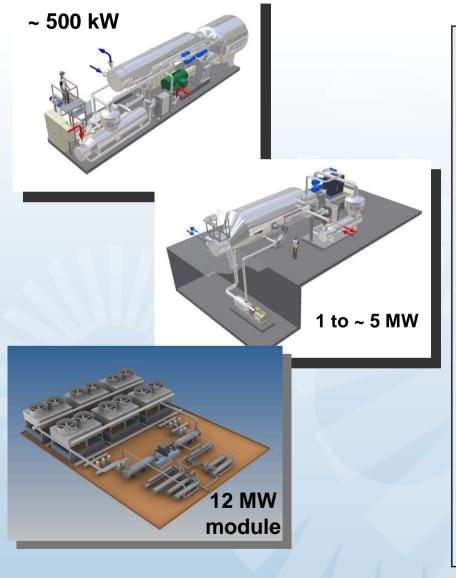
products


• Turboden designs

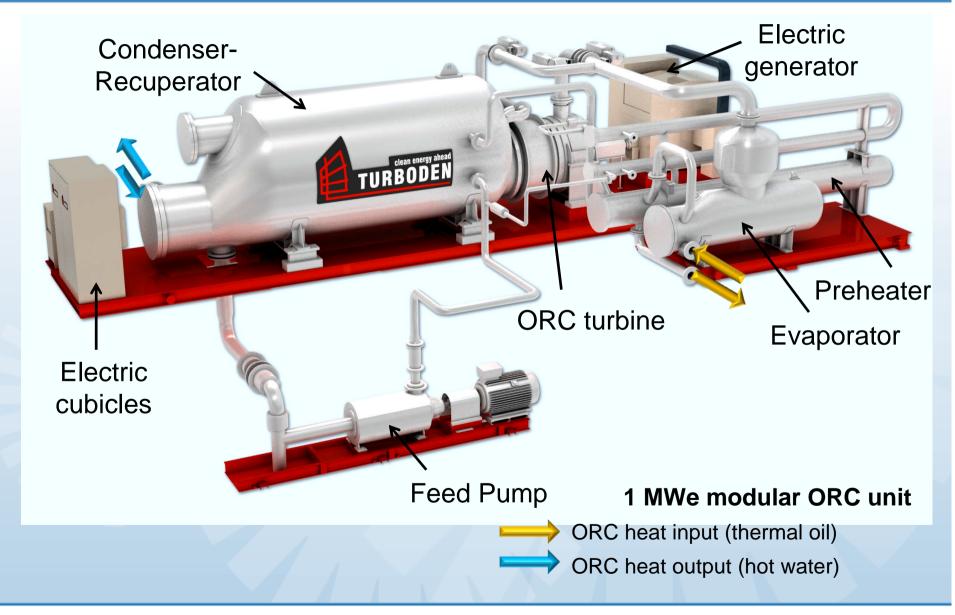
and manufactures

Organic Rankine

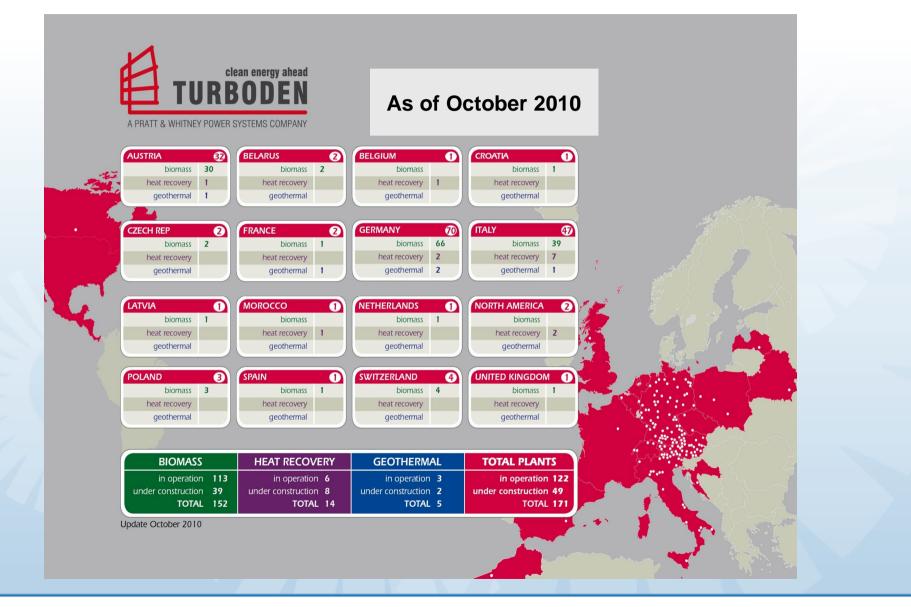
- Standard sizes from 400 kW to 5 MW
- Customized to > 10 MW
- Many renewable sources including recip engines


TURBODEN – GLOBAL ORC LEADER 🎬 Pratt & Whitney

TURBODEN PRODUCT LINE



- High cycle efficiency (up to 24%)
- Size flexibility: 400 kW to 12 MW
- High field availability (> 98%)
- Partial load operation (down to 10%)
- Low Operation & Maintenance requirements (~ 150-250 hrs/yr)
- Long life > 20 years
- Simple, unmanned operation
- Direct drive generator
- Remote monitoring and control


TD UNITS – MAIN COMPONENTS

INSTALLATIONS - TURBODEN

HR UNITS – STANDARD SIZES

Typical Performance Characteristics for Turboden Heat Recovery (HR) Units*

	TD4 HR	TD6 HR	TD7 HR	TD10 HR	TD14 HR	TD18 HR	TD22 HR	TD27 HR
°F ℃	527/302 275/150	500/302 260/150	518/302 270/150	518/302 270/150	527/302 275/150	536/302 280/150	536/302 280/150	545/311 285/155
MMBtu/hr kW	7.51 2,200	9.73 2,850	11.77 3,450	15.36 4,500	22.01 6,450	29.69 8,700	37.54 11,000	46.08 13,500
°F ℃	77/95 25/35	77/95 25/35	77/95 25/35	77/95 25/35	77/100 25/38	77/104 25/40	77/108 25/42	77/118 25/48
MMBtu/hr kW	6.01 1,760	7.69 2,253	9.31 2,728	12.16 3,563	17.39 5,096	23.41 6,860	29.63 8,682	36.35 10,650
kW	418	567	687	898	1,302	1,762	2,220	2,740
	19.0%	19.9%	19.9%	19.9%	20.2%	20.3%	20.2%	20.3%
kW	18	22	27	33	52	62	80	110
kW	400	545	660	865	1,250	1,700	2,140	2,630
	18.2%	19.1%	19.1%	19.1%	19.2%	19.6%	19.5%	19.5%
	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.	asynch., 3 phase, L.V.
ft	49 x 10 x 10	49 x 10 x 10	49 x 10 x 10 15 x 3 x 3	49 x 15 x 11 15 x 5 x 3	43 x 20 x 20 13 x 6 x 6	49 x 23 x 16 15 x 7 x 5	56 x 23 x 16 17 x 7 x 5	56 x 23 x 1 17 x 7 x 5
	°C MMBtu/hr kW °F °C MMBtu/hr kW kW kW	°F 527/302 °C 275/150 MMBtu/hr 7.51 kW 2,200 °F 275/35 MMBtu/hr 25/35 MMBtu/hr 6.01 kW 418 19.0% 18 kW 18.2% asynch., 3 phase, L.V.	°F 527/302 500/302 °C 275/150 260/150 MMBtu/hr 7.51 9.73 2,200 2,850 °F 25/35 °C 25/35 MMBtu/hr 2,200 °F 25/35 °C 25/35 MMBtu/hr 6.01 1,760 2,253 KW 418 19.0% 19.9% kW 18 22 19.1% 18.2% 19.1% asynch., 3 asynch., 3 phase, L.V. phase, L.V.	°F 527/302 500/302 518/302 °C 275/150 260/150 270/150 MMBtu/hr 7.51 9.73 11.77 %W 2,200 2,850 3,450 °F 25/35 25/35 25/35 MMBtu/hr 6.01 7.69 9.31 MMBtu/hr 6.01 7.69 9.31 MWW 418 567 687 19.0% 19.9% 19.9% kW 18 22 27 kW 18 21 27 kW 18.2% 19.1% 19.1% asynch., 3 asynch., 3 asynch., 3 asynch., 3 phase, L.V. phase, L.V. phase, L.V. phase, L.V.	°F 527/302 500/302 518/302 518/302 270/150 MMBtu/hr 7.51 9.73 11.77 15.36 WW 2,200 2,850 3,450 4,500 °F 77/95 25/35 25/35 25/35 °C 77/95 25/35 25/35 25/35 MMBtu/hr 6.01 7.69 9.31 12.16 WW 1,760 2,253 2,728 3,563 KW 418 567 687 898 19.0% 19.9% 19.9% 19.9% kW 18 22 27 33 KW 400 545 660 865 18.2% 19.1% 19.1% 19.1% 19.1% asynch., 3 asynch., 3 asynch., 3 phase, L.V. phase, L.V.	°F 527/302 500/302 518/302 518/302 527/302 527/302 MMBtu/hr 7.51 9.73 11.77 15.36 22.01 kW 2,200 2,850 3,450 4,500 6,450 °C 25/35 25/35 25/35 25/35 25/35 25/35 °C 25/35 25/35 25/35 25/35 25/35 25/38 MMBtu/hr 6.01 7.69 9.31 12.16 17.39 kW 1,760 2,253 2,728 3,563 5,096 kW 18 22 27 33 52 kW 18 22 27 33 52 kW 18.2% 19.1% 19.1% 19.1% 19.2% asynch., 3 asynch., 3 asynch., 3 asynch., 3 asynch., 3 asynch., 3	°F 527/302 500/302 518/302 518/302 527/302 536/302 MMBtu/hr 7.51 2.60/150 270/150 270/150 275/150 280/150 MMBtu/hr 7.51 2.200 2.850 11.77 15.36 22.01 29.69 %KW 77/95 273 2.850 77/95 77/95 77/100 275/140 %F 25/35 25/35 25/35 25/35 25/35 25/36 25/40 MMBtu/hr 6.01 7.69 9.31 12.16 17.39 23.41 KW 418 567 687 898 1,302 1,762 19.0% 19.9% 19.9% 19.9% 20.2% 20.3% KW 418 22 27 33 52 62 KW 400 545 660 865 1,250 1,700 18.2% 19.1% 19.1% 19.1% 19.2% asynch.3 asynch., 3 phase, L.V. <td< td=""><td>PF °C527/302 275/150500/302 260/150518/302 270/150527/302 270/150536/302 280/150536/302 280/150MMBtu/hr kW7.51 2,2009.73 2,85011.77 3,45015.36 4,50022.01 6,45029.69 8,70037.54 11,000°C °C °C 25/3577/95 25/3577/95 25/3577/95 25/3577/100 25/3577/104 25/3577/104 25/35°C °C °C 1,7607.69 2,2539.31 2,72812.16 3,56317.39 5,09623.41 6,86029.63 8,682KW418 19.0%567 19.9%687 19.9%898 19.9%1,302 20.2%1,762 20.3%2,220 20.3%KW418 19.0%22 19.9%19.9% 19.9%20.2% 3320.3% 20.2%20.2% 80KW400 18.2% 19.1%545 19.1%660 19.1%865 1,2501,700 19.2%2,140 19.6%19.6% 19.5% asynch, 3 phase, L.V.19.1% phase, L.V.19.2% asynch, 3 asynch, 3 phase, L.V.33nch, 3 asynch, 3 phase, L.V.39nch, 3 asynch, 3 phase, L.V.39nch, 3 phase, L.V.39nch, 3 phase, L.V.</td></td<>	PF °C527/302 275/150500/302 260/150518/302 270/150527/302 270/150536/302 280/150536/302 280/150MMBtu/hr kW7.51 2,2009.73 2,85011.77 3,45015.36 4,50022.01 6,45029.69 8,70037.54 11,000°C °C °C 25/3577/95 25/3577/95 25/3577/95 25/3577/100 25/3577/104 25/3577/104 25/35°C °C °C 1,7607.69 2,2539.31 2,72812.16 3,56317.39 5,09623.41 6,86029.63 8,682KW418 19.0%567 19.9%687 19.9%898 19.9%1,302 20.2%1,762 20.3%2,220 20.3%KW418 19.0%22 19.9%19.9% 19.9%20.2% 3320.3% 20.2%20.2% 80KW400 18.2% 19.1%545 19.1%660 19.1%865 1,2501,700 19.2%2,140 19.6%19.6% 19.5% asynch, 3 phase, L.V.19.1% phase, L.V.19.2% asynch, 3 asynch, 3 phase, L.V.33nch, 3 asynch, 3 phase, L.V.39nch, 3 asynch, 3 phase, L.V.39nch, 3 phase, L.V.39nch, 3 phase, L.V.

CHP UNITS – STANDARD SIZES

Typical Performance Characteristics for Turboden CHP Units*

		TD6 CHP	TD7 CHP	TD10 CHP	TD14 CHP	TD18 CHP	TD22 CH
Input — Thermal Oil							
Nominal Temperature (In/Out)	°F °C	572/464 300/240	572/464 300/240	572/464 300/240	572/464 300/240	572/464 300/240	572/464 300/240
Thermal Power Input	MMBtu/hr kW	11.06 3,240	13.02 3,815	17.54 5,140	22.92 6,715	33.41 9,790	41.02 12,020
Output — Cooling Water							
Cooling Water Temperature (In/Out)	°F °C	140/176 60/80	140/176 60/80	140/176 60/80	140/176 60/80	140/194 60/90	140/194 60/90
Thermal Power to the Cooling Water	MMBtu/hr kW	8.77 2,569	10.38 3,040	13.95 4,087	18.15 5,318	26.76 7,842	32.77 9,601
Performance							
Gross Electric Power	kW	641	738	1,016	1,339	1,863	2,304
Gross Electric Efficiency		19.8%	19.3%	19.8%	19.9%	19.0%	19.2%
Captive Power Consumption	kW	30	35	48	58	79	97
Net Electric Efficiency**		18.9%	18.4%	18.8%	19.1%	18.2%	18.4%

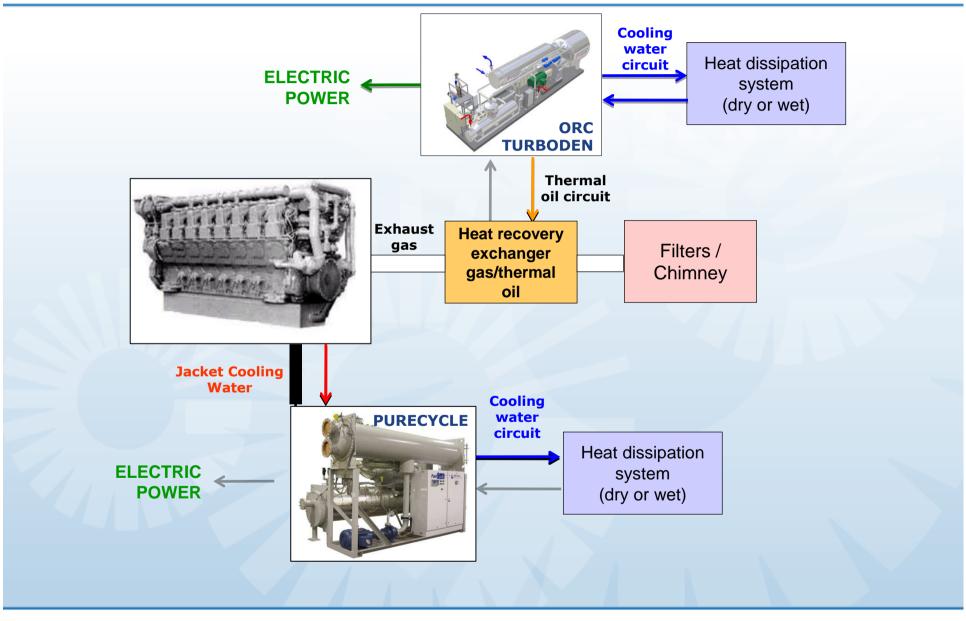
"Data indicated can be optimized taking into account the actual features of the specific project.

**Ratio between net active power output and thermal power input from thermal oil.

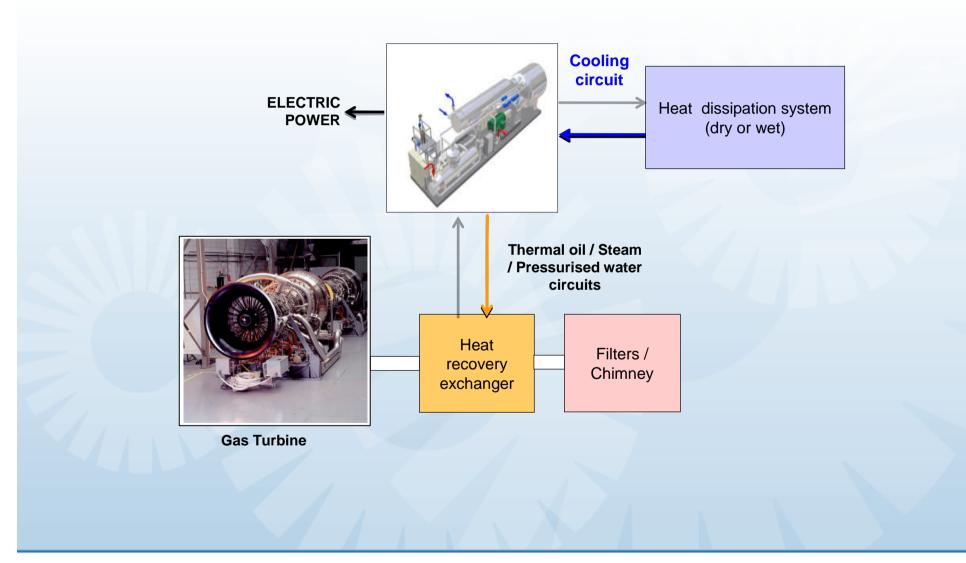
ELECTRIC ONLY (HIGH EFF) UNITS 2 Pratt & Whitney

*Typical Performance Characteristics for Turboden High-Efficiency (HRS) Units**

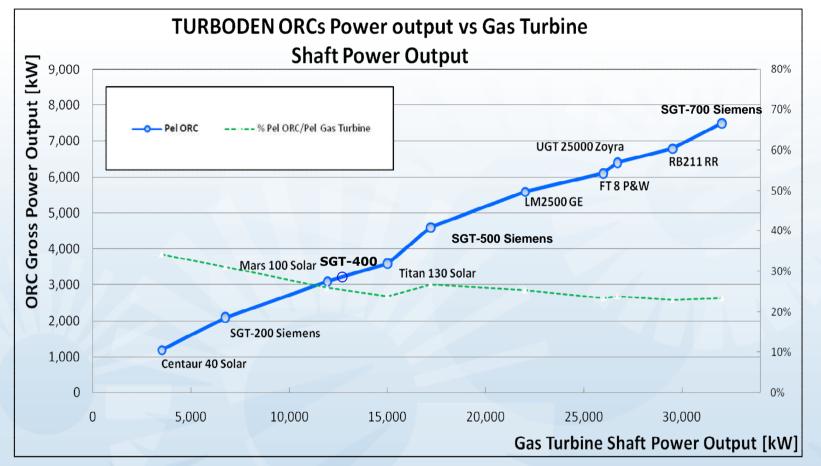
		TD12 HRS	TD24 HRS
Input — Thermal Oil			
Nominal Temperature (In/Out)	°F °C	581/403 305/206	572/412 300/211
Thermal Power Input	MMBtu/hr kW	16.44 4,817	32.88 9,634
Output — Cooling Water			
Cooling Water Temperature (In/Out)	°F °C	77/95 25/35	81/99 27/37
Thermal Power to the Cooling Water	MMBtu/hr kW	12.14 3,556	24.38 7,143
Performance			
Gross Electric Power	kW	1,188	2,342
Gross Electric Efficiency		24.7%	24.3%
Captive Power Consumption Net Active Electric Power Output	kW kW	49 1,139	94 2,248
Net Electric Efficiency**		23.6%	23.3%


KEY MARKET SECTORS

IC ENGINES: UP TO 10 % ADD'L POWER



IC ENGINES: TD REFERENCE PLANT Pratt & Whitney


Project	ORC Module	Site	Engines
Pisticci I	TURBODEN 18 HR SPLIT (1,8 MWe)	Pisticci	3 x 8 MWe Wartsila Diesel engines
Oxon	TURBODEN 6 HR SPLIT (0,6 MWe)	Pavia	1 x 8 MWe MAN Diesel engine
FinPower	TURBODEN 6 HR DIR. EXCH. (0,6 MWe)	Visano	1 x 7 MWe Wartsila Diesel engine
Pisticci II	TURBODEN 40HR SPLIT (4,5 MWe)	Pisticci	3 x 17 MWe Wartsila Diesel engines
Cereal Docks	TURBODEN 6 HR DIR. EXCH. (0,6 MWe)	Portogruaro	1 x 7 MWe Wartsila Diesel engine
Eukrasia	TURBODEN 6 HR SPLIT (0,6 MWe)	Catania	2 x 1 MWe JGS/GE gas engine + 3 x 0,8 MWe JGS/GE gas engine + 1 x 0,6 MWe JGS/GE gas engine
Blue Tower	TURBODEN 6 HR (0,6 MWe) Under construction	Herten (D)	2 x 2,1 MWe MWM gas engine (+ additional heat from process)
UIm	TURBODEN 10 HR cogenerative (0,8 MWe) Under construction	Senden (D)	2 x 2 MWe JGS/GE gas engine (+ additional heat from process)
Land & Marine Blue NG	2 x TURBODEN 10 HR (0,8 MWe) Under construction	Southall (UK) Beckton (UK)	1 x 14 MWe MAN Diesel engine

GAS TURBINES: UP TO 30% ADD'L POWER Pratt & Whitney

GAS TURBINES – TYPICAL OUTPUTS

ORC suitable for heat recovery in:

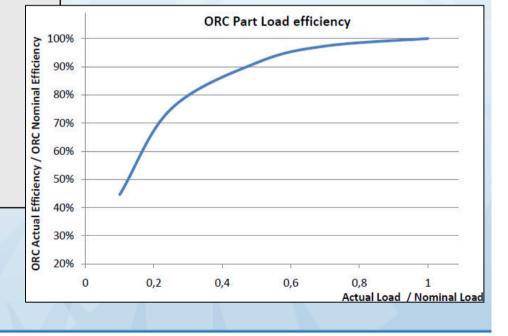
- Remote/unmanned locations with variable operating loads (ex., gas compressor stations)
- Continuous applications
- "Peak load" power stations (easy and fast start-up procedures)

NOTE: Indicative values assuming ambient air temperature of 15°C, Gas Turbines operating at nominal load; calculations based on Gas Turbine exhaust gas properties as reported in specific suppliers web sites.

GAS TURBINES: REFERENCE PLAN A United Technologies Company

Heat Source: Solar Centaur 40

- 3505 kW Shaft Output
- 19.0 kg/sec mass flow
- 446°C Exhaust Temp
- Gas compression station ORC Model: TD 10 HR
- 865kW Net Electric Output
- 19.1% Electric Efficiency
- 49 X 11 X 15 ft size (60 Tons) Benefits
- 25% increase in power output
- 25% reduction in CO2 footprint

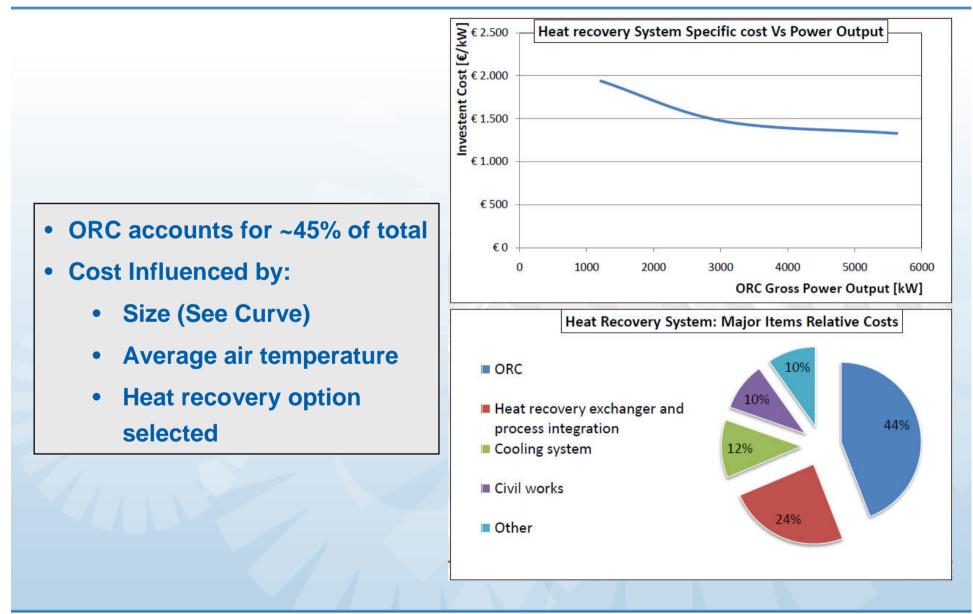


Trans Gas

Pratt & Whitney Confidential and Proprietary

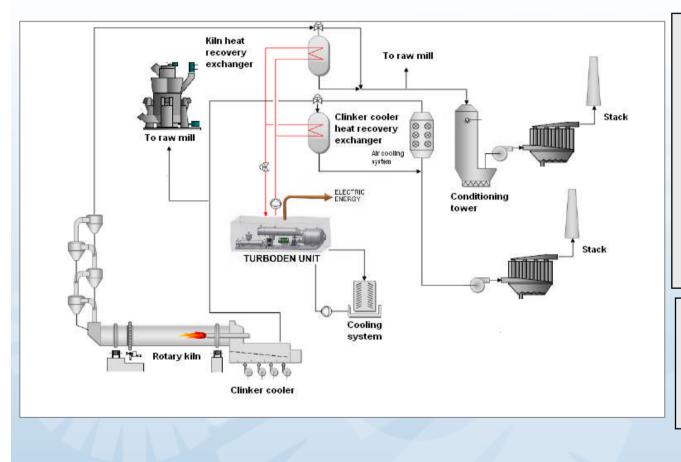
SYSTEM ADVANTAGES

- Completely automated no operator
- Very low O&M Costs
- No effect on main power plant operation
- Simple Start/Stop procedures
- Maintains good efficiency at partial load
- Low turbine RPM, low mechanical stress
- Can reach efficiencies up to 25%
- Do not consume water
- Remotely monitored and controlled
- Turn-down to 10% of nominal power
- Quiet Operation



23

INVESTMENT COSTS


HEAT RECOVERY APPLICATIONS

Typical limits	GAS >480°F (250°C)	LIQUID >195°F (90°C)	STEAM / VAPOR
Cement	V		
Glass			
Oil & Gas	V	Ň	N
Chemicals	V		N.
Steel / Non Ferrous	V		N
Pulp & Paper		M	Ň
Food		M	
Waste treatment			
Thermal Oxidizers		Ň	
Power generation	N.		M

CEMENT PRODUCTION PROCESS

Exhaust Gas:

- High dust content
- Different operating conditions depending on mill operation, season, plant upsets, etc.

Exhaust gas streams:

- Kiln pre-heater gas
- Clinker cooler gas

• Clinker production capacity: ≈ 5.000 ton/day

- Heat source: exhaust gas @ 330°C
- Gas cooled down to 220°C (extra heat used for raw material pre heating)
- ORC electric power: About 2 MWe
- Client: CIMAR ITALCEMENTI GROUP (Morocco)

Reference Case study: PRS gas waste heat recovery

• Under construction, start up Q4, 2010

CEMENT PRODUCTION REFERENCE

REFRACTORY PRODUCTION EXAMPLE

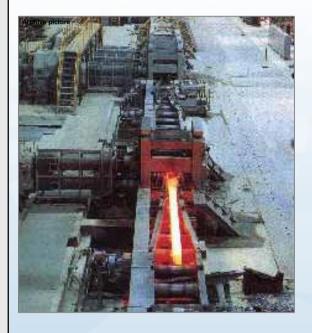
RHI

Refractory ovens exhaust gas

- Refractory production capacity: ~250 ton/day
- Heat source: exhaust gas @ 500 °C
- Gas cooled down to ~ 150 °C
- ORC electric power: About 1 MWe
- Client: RHI GROUP (Radenthein -Austria)
- In operation since: Q1, 2009

STEEL INDUSTRY

- Rolling, forging
- Heat treatment
- Strip processing
- Sinter
- Blast furnace
- BOF
- EAF


- Relatively clean exhaust gas at moderate temperature
- Cost effective for ORC ≥ ~ 1 MW
- Interface between process and energy recovery unit is critical
- Exhaust gas:
 - high flow
 - high temperature
 - high dust content
 - large variations in operating cycle
 - environmental constraints

ELEC. ARC FURNACE EXAMPLE 1

- Billet re-heating furnace
 - Production capacity: ~ 100 MT/h
 - Heat source: exhaust gas @ 500°C (930°F)
 - Gas cooled down to 150°C (355°F)
- No heat carrier: direct heat exchange
- Exhaust Gas Characteristics:
 - Absence of dust (natural gas fired)
 - Variable conditions depending on mill operation, etc.
 - ORC electric power: ~ 1 MW

Study for merchant and re-bar mini-mill – Italy Sponsored by EU Life+ program

30

EAF off-gas with steam production

- EAF: 40 MT
- Heat source: exhaust gas
- 20 MT/hr of steam @ 13-20.5 bar
- Steam used in ejectors for vacuum cleaning

ELEC. ARC FURNACE EXAMPLE 2

 Residual steam (~ 15 MT/hr @ 15 bar) for the ORC

ORC electric power: ~ 1 MW

Georgsmarienhütte GmbH · seit 1856 · Edelstahl

Proposal for *Georgsmarienh tte Gmbh*

ELEC. ARC FURNACE EXAMPLE 3

EAF + Bloom / Billet

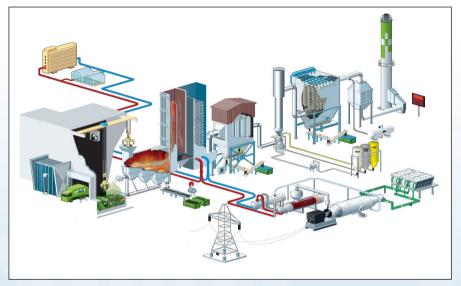
• EAF Exhaust + WBF Skids / exhaust

Heat resources

- EAF: 20 MT/hr of steam @ 14-28 bar (220-440 psi)
- WBF: saturated steam @ 16 bar (250 psi)
- WBF skids: hot water 150 m3/hr @ 110 C (230 F) – return at 90 C (150 F), partly used for district heating
- ORC electric power: ~ 3.7 MW

Proposal for long high-grade steel mini-mill - Germany

GLASS INDUSTRY



Heat source properties:

- High exhaust gas temperature
- Constant operating conditions
- Exhaust gas with moderate dust content
- Exhaust gas must be cooled not below 200°C
- High efficiency ORC used (~ 25% efficiency)

REFERENCE CASE - INCINERATOR STATE CASE - INCINERATOR

Heat recovery from pressurized water boiler in waste incinerator

- Q2, 2008 start-up (MIROM, Belgium)
- Hot water at 180°C (back 140 °C)
- Cooling source: Water/Air
- Total electric power: 3 MW
- Net electric efficiency: 16,5%
- Availability: > 98%

ADVANTAGES – TURBODEN + PWPS

- Products
- Size flexibility
- Wide temperature range
- ORC Experience
- Proven reliability
- Modularity
- Aftermarket capability
- Financial strength
- Lead time

EPC/Turnkey or Equipment Only

- 280 kW 12 MW Building Blocks
- 91°C to > 300°C
 - **30 years**
 - Standard designs/P&W Quality Standards
 - Factory assembled systems
 - **Global Service Infrastructure /**
 - **Backed by Pratt & Whitney**
 - ~ 12-14 Months for custom made units

THANK YOU !

www.turboden.com

www.pw.utc.com

David Paul (david.paul@pw.utc.com)